■多くの約数をもつ合成数(その4)

 さらに脱線しますが,分割数を取り上げたいと思います.

===================================

 「分割数」とは与えられた整数にどれだけ多くの分割があるのか(4=1+1+1+1,4=3+1)という整数の分割理論のことです.整数の分割では,3=2+1と3=1+2のように足し算の順序が違うものは同じと見なすことにします.

 たとえば,4を分割するには非増加数列で構成した5通りの方法,4=3+1=2+2=2+1+1=1+1+1+1がありますから,p(4)=5.同様にして,5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1よりp(5)=7となります.(分割を図形的に表す方法にヤング図形がある.ヤング図形は非増加な非負整数列を表現する印象的な方法である.)

 オイラーの5角数定理を用いると,分割関数に対する再帰関係式

  Σp(n-j(3j±1)/2)(-1)^j=0

  p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+p(n-12)+・・・

が得られます.これより

  p(0)=1,p(1)=1,p(2)=2,p(3)=3,p(4)=5,p(5)=7,p(6)=11,

  p(7)=15,p(8)=22,p(9)=30,p(10)=41,p(11)=56,p(12)=77,・・・

を効率的に計算することができます.

 ここで,p(n)はオイラーの分割関数とも呼ばれますが,定義が簡単そうにみえるにも関わらず,易しい式で表すことはできません.

  1+Σp(n)x^n=Π(1/(1−x^n))

 p(n)を評価する問題は数論において研究されていて,1918年,ハーディーとラマヌジャンによって,円周法による漸近近似式:

  p(n) 〜 1/4n√(3)exp(π√(2n/3))

が与えられています.

 その後,分割関数はラーデマッハーによって修正され,完全な明示公式

  p(n)=1/π√(2)Σk^(1/2)Ak(n)d/dn{sinh(πλn√(2/3))/λn}

  λn=√(n-1/24),Ak(n)には1の24乗根が関係する

が与えられました(1937年).

 明示公式はいわば「等式の世界」のものですが,実は円周法に基づく漸近公式

  p(n) 〜 1/4n√(3)exp(π√(2n/3))

の結果を正確に証明するだけでも,長くてこみ入った理論が必要になります.

===================================

【1】オイラーの分割関数

 たとえば,正の整数nに対して,

  n=k1+2k2+3k3   (k1≧0,k2≧0,k3≧0)

となる解(k1,k2,k3)の個数をanとします.n=5の場合,

  1+1+1+1+1 → (5,0,0)

  1+1+1+2  → (3,1,0)

  1+1+3   → (2,0,1)

  1+2+2   → (1,2,0)

  2+3    → (0,1,1)

ですから,a5=5となります.

  a0=1,a1=1,a2=2,a3=3,a4=4,a5=5,・・・

 このとき,母関数は

  f(x)=Σanx^n=Σx^(k1+2k2+3k3)=Σx^k1Σx^2k2Σx^3k3

 =1/(1−x)・1/(1−x^2)・1/(1−x^3)

となります.

  (1−x)(1−x^2)(1−x^3)Σanx^n=1

ですから,各項の係数を比較すると漸化式

  an=an-1+an-2−an-4−an-5+an-6

を得ることができます.

  a6=7,a7=8,a8=10,a9=12,a10=14,a11=16,・・・

 この問題を一般化して

  n=k1+2k2+3k3+・・・   (k1≧0,k2≧0,k3≧0,・・・)の個数p(n)を考えます.n=5の場合,a5に

  1+4,5

が加わり,p(5)=7となります.

 このことから,分割数は以下の公式によって代数的に定義することができることがわかります.

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =(1+x+x^2+・・・)(1+x^2+x^4+・・・)(1+x^3+x^6+・・・)(1+x^4+x^8+・・・)・・・

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

すなわち,f(x)は分割関数p(n)の母関数で,p(n)はx^nの係数になっています.

 x^k1を第1因子(1+x+x^2+・・・)の一般項,x^2k2を第2因子(1+x^2+x^4+・・・)の一般項,x^3k3を第3因子(1+x^3+x^6+・・・)の一般項,・・・とすると,

  n=k1+2k2+3k3+・・・

となって,x^nの項が整数nの分割に対応することになるのですが,オイラーはこのようにしてp(n)の母関数

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

を得たというわけです.

===================================

【2】分割数の近似式

 p(n)を評価する問題は数論において研究されていて,ラマヌジャンが予想した注目すべき漸近近似式

  p(n) 〜 1/4n√(3)exp(π√(2n/3))

は,1918年,ハーディーとラマヌジャンによって,円周法を用いて証明が与えられています.

 実は,円周法に基づく漸近公式の結果を正確に証明するだけでも,長くてこみ入った理論が必要になります.そこで漸近公式の概要だけを簡単に述べますが,σ(k)をkの約数の和とすると,p(n)に対する漸化式

  p(n)=1/nΣσ(k)p(n-k)

において,σ(k)の漸近的振る舞い

  1/n^2Σσ(k)〜π^2/12

を用いると,nが大きい場合の分割数の漸近挙動

  p(n)〜exp(π√(2n/3))/4n√3

を得ることができます.このことから,p(n)は準指数関数と考えることができます(p(n)^(1/n)→1).

  q(n)=1/4n√(3)exp(π√(2n/3))

とおいて最も近い整数を求めてみると,

  q(1)=2,q(2)=3,q(3)=4,q(4)=6,q(5)=9,q(6)=13,

  q(7)=18,q(8)=26,q(9)=35,q(10)=48,q(11)=65,q(12)=87,・・・

となってそれほどよい評価式には思えませんが,漸近近似式はnがどんどん大きくなるとき0に近づくような誤差項を含んだ公式なのです.

 n=243の場合,p(243)=133978259344888に対して

  p(n)〜exp(π√(2n/3))/4n√3〜1.38×10^14  (誤差は約3%)

 その後,分割関数はラーデマッハーによって修正され,完全な明示公式

  p(n)=1/π√(2)Σk^(1/2)Ak(n)d/dn{sinh(πλn√(2/3))/λn}

  λn=√(n-1/24),Ak(n)には1の24乗根が関係する

が与えられました(1937年).

 分割関数の母関数

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

は,本質的にモジュラー形式を与えるので,ラーデマッハーはその保型性から明示公式にたどりついたのですが,ハーディーとラマヌジャンはその第一近似式を得たことになります.このことに関して,セルバーグは,ハーディーとラマヌジャンが明示公式までたどりつけなかった原因はハーディーがラマヌジャンを十分に理解できなかったことによると興味深いコメントを述べています.

===================================

【3】おまけ

 ラマヌジャンはp(n)が満たす合同式について

  p(5n+4)=0  mod5

  p(7n+5)=0  mod7

  p(11n+6)=0  mod11

  p(599)=0  mod5^3

  p(721)=0  mod11^2

を予想し,それらを証明しています.

===================================