■素因数を2つしかもたない合成数(その2)

 概素数(素因数を2つしかもたない合成数)について知られている定理を紹介します.

===================================

【1】双子素数

 その差が2であるような素数のペア(p,p+2)を双子素数と呼びます.小さな双子素数には(3,5),(5,7),(11,13),(17,19),・・・など,ちょっと大きなものでは(22271,22273),・・・などがあります.

 双子素数が無限に多く存在するかどうかは今のところわかっていません.双子素数の場合に難しいのは素数全体のときと異なって,双子素数の逆数の和

1/3+1/5+1/5+1/7+1/11+1/13+1/17+1/19+・・・+1/p+1/(p+2)+・・・

が無限大とはならずに,その和が1.90195・・・(ブルンの定数:1919年)となることが証明されている点です.このことは,双子素数が無限にあるとしても,まれにしか存在しないことを示しています.そのため,双子素数が無限に存在することの有力な証拠は見つかっているにもかかわらず,完全な証明には至っていないのです.

 双子素数の分布に関しては,ハーディとリトルウッドによって,

  πtwin(x)〜Cx/(logx)2

ただし,pを3以上の素数として

  C=2Π(1−1/(p−1)2)=1.3203・・・

と予想されています.ここで,Cはオイラー積のアナログであり,双子素数の場合のゼータ関数とみなすことができます.定まった用語ではないのですが,ハーディ・リトルウッド積と呼んでいいでしょう.この法則は経験的には正しそうであり,双子素数はたぶん無限組あると信じられています.

 現在のところ,双子素数予想にもっとも接近した結果は,1966年,陳景潤によるもので,陳景潤は素数pと概素数p+2(素因数を2つしかもたない合成数)のペアは無限に存在することを証明しました.これは無限に多くの双子素数が存在することに大変接近した結果であって,双子素数予想の証明に向かって最初の大きな一歩と考えられます.もう一歩進んで「概」を取り去ることに成功した者が,素数理論の大快挙を成し遂げたことになるのです.

===================================