■シャボン玉の科学(その48)
【2】等周不等式
平面凸集合に関して,周の長さLが一定で面積Aが最大の図形(面積が一定で周の最小な図形)は円であるという事実はよく知られています.そのことはL2 ≧4πAという不等式で表現されます.等号は円のときだけ成立します.
同様に,3次元凸集合に対し,表面積をS,体積をVとするとS3 ≧36πV2 が成り立ちます.等号成立は球のときだけで,すべての立体中で球が表面積に対して最大の体積をもっています.
そこで,等周不等式
L2 ≧4πA
S3 ≧36πV2
をどんな次元にも適用できるように公式化してみましょう.
===================================
球に相当するn次元の図形を超球と呼びます.n次元単位超球{x12+x22+・・・+xn2≦1}の体積をVnとすると,V1=2(直径),V2=π(面積),V3=4π/3(体積)はご存知でしょう.n次元単位球はどんなに次元が高くても,長さが2より大きな線分を含むことはできません.
n次元単位超球の体積Vn,その表面積を表面積Sn-1とすると,単位超球の表面積Sn-1はnVn,半径rのn次元球の体積はVnr^n,表面積はnVnr^(n-1)となります.n次元単位超球の体積Vnを求めてみることにしましょう.
まず,ガウス積分をn次元に拡張し,
I=∫(-∞,∞)exp(-x1^2+x2^2+・・・+xn^2)dx1dx2・・・dxn
を考えると∫(-∞,∞)exp(-x^2)dx=π^(1/2)のn重積分より,直ちに
I=π^(n/2)
を得ることができます.
次に,n次元ガウス積分を別の方法,すなわち,直交座標でなく極座標で求めてみます.ガウス積分の被積分関数を原点を中心とする半径rの球面上で積分し,次にr=0からr=∞まで積分すると,半径rの球面上で被積分関数は一定値exp(-r^2)をとり,表面積はnVnr^(n-1)ですから,
I=∫(0,∞)exp(-r^2)nVnr^(n-1)dr
=nVn∫(0,∞)r^(n-1)exp(-r^2)dr
z=r2と変数変換するとdz=2rdrより
I=nVn/2∫(0,∞)z^(n/2-1)exp(-z)dz
=Vnn/2Γ(n/2) (n/2Γ(n/2)=Γ(n/2+1))
=VnΓ(n/2+1)
したがって,
Vn=π^(n/2)/Γ(n/2+1)
を得ることができます.また,Γ(m+1)=m!より,この結果は,形式的に
Vn=π^(n/2)/(n/2)!
と書くことができます.
nが整数のとき,実際にVnの値を計算してみると,
n Vn
1 2
2 3.14
3 4.19
4 4.93
5 5.263
6 5.167
7 4.72
8 4.06
9 3.30
10 2.55
1次元から6次元までを具体的に書けば,
Vn=2,π,4π/3,π2/2,8π2/15,π3/6
という具合に,πのべき乗は偶数次元になるたびに1つあがります.また,超球の体積はn=5のとき最大8π2/15=5.2637・・・となり,以後は減少します.(次元を整数に限らなければ5.256次元で最大となり,そのときの体積は5.277・・・である.)
Vn-1がわかれば,Vnは漸化式:
Vn/Vn-1=Γ(1/2)Γ{(n+1)/2}/Γ(n/2+1)=B(1/2,(n+1)/2)
によって求めることができますが,この計算は面倒ですから,Vn-2との漸化式
Vn/Vn-2=2π/n
を用いると任意のnに対して
nが奇数であれば,Vn=2(2π)^((n-1)/2)/n!!
nが偶数であれば,Vn=(2π)^(n/2)/n!!
とも書けることも理解されます.
そして,n→∞のとき,
Vn/Vn-2=2π/n→0
Sn-1/Sn-3=nVn/(n-2)Vn-2=2π/(n-2)→0
ですから,不思議なことに,単位球面の体積や表面積はn→∞のとき0に収束するのです.また,このことから,n次元単位超立方体[-1,1]^nにおいて,単位超球が占める比率は,n=2であればπ/4(79%)であるが,n=5のときは16%に下落し,n=10となると0.25%になることも理解されます.したがって,高次元において,超立方体内に一様分布する標本を考えるとき,低次元の場合とは対照的に,大部分のデータは超球外に位置することになります.また,ここで重要なのは,単位超球を超立方体中に置くと,次元が大きくなるにつれて隙間がより大きくなる点です.
===================================
さて,立体図形のS3 /V2 は平面図形のL2 /Aの相当していて,等周比あるいは等周定数と呼ばれます.半径rのn次元球の体積はVnr^n,表面積はnVnr^(n-1)となりますから,等周比を無次元化するために,
n次元等周比=表面積^n/体積^(n-1)
と定義すると,
n次元等周比≧n^nVn=n^nπ^(n/2)/Γ(n/2+1)(=Cn)
を得ることができます.等号は超球のときに限ります.
とくに,n=2のときとn=3のときについては,
C2=4π,C3=36π
になること,すなわち,
L2 ≧4πA
S3 ≧36πV2
が証明されました.
以下,
C4=2^7π^2,C5=8/3*5^4π^2,C6=6^5π^3,・・・
となりますが,等周比が有理数(整数)×πの形となるのは,2次元・3次元だけのようです.
===================================