■シャボン玉の科学(その19)

【2】4次元正多胞体とシュレーフリ記号

 4次元正多胞体はシュレーフリ記号{p,q,r}・・・各頂点にp角形がq面集まる多面体が各辺にr個集まる・・・で表記されるとします.

 3次元正多面体(p,q)を各辺のまわりにr個集めてできる4次元正多胞体の必要条件は,2面角のr倍が4直角未満ですから,正4面体(3,3)の2面角は71°より少し小さいので,1本の辺に3,4,5個の正4面体を置くことができます→(3,3,3),(3,3,4),(3,3,5).

 立方体(4,3)の2面角は直角ですから,1本の辺のまわりに4個の立方体で隙間なく空間を充填します.しかし,(4,3,4)では無限の多面体になってしまいますから,超立方体(4,3,3)は有限胞体になります.

 正8面体と正12面体の2面角は,90°と120°の間にあるので,1辺の周囲には3個の正多面体が置けます→(3,4,3),(5,3,3).正20面体の2面角は120°より大きいので,このようなことはできません.

 すなわち,正4面体に対してはr=2,3,4.正6,8,12面体に対してはr=3.正20面体では許されないので,結局,正多胞体の可能性としては(3,3,3),(3,3,4),(3,3,5),(4,3,3),(3,4,3),(5,3,3)しかあり得ないことがわかります.

 以上の必要条件をまとめると

  1/p+1/q>1/2   (p,q≧3)

  1/q+1/r>1/2   (q,r≧3)

となります.そして,実際にこの6通りの正多胞体が構成できます.なお(4,3,4)は角の和がちょうど4直角となるので,3次元空間充填形です.

 そうすることによって,以下の結果が得られます(境界面p,頂点に集まる面q,辺に集まる胞r).

      境界多面体 境界面p 頂点に集まる面q 辺に集まる胞r

5胞体   正4面体    3        3       3

8胞体   立方体     4        3       3

16胞体  正4面体    3        3       4

24胞体  正8面体    3        4       3

120胞体 正12面体   5        3       3

600胞体 正4面体    3        3       5

===================================