■多角形の三角形分割(その1)
今回のコラムでは多角形の三角形分割を取り上げることにしますが,その前に,凸n角形の対角線は何本あるか考えてみることにします.
===================================
[Q1]凸n角形の対角線の本数は?
[A1]ひとつの頂点から引ける対角線はn−3本.また,頂点はn個あるから,n(n−3)本のように思えるが,これでは同じ対角線が重複して数えられているから2で割って,n(n−3)/2本.
===================================
凸多角形(n+2角形)に対角線を描いて,それをいくつかの凸多角形に分けるのではなく,対角線を互いに交わらないように引いて三角形分割する問題を考えよう.
[Q2]凸n+2角形に互いに交わらないn−1本の対角線を引いて三角形分割する仕方の数c(n)は?
[A2]この問題はオイラーが提起した幾何学問題である(オイラーの問題).4角形では2通り,5角形では5通りあることは数えられても,6角形ではそう簡単にはいかない.
6角形の場合,たとえばある対角線を引いて3角形と5角形,4角形と4角形,5角形と3角形に分割することができるが,そのような分割の仕方を場合分けすることで,積和型の漸化式
c(n+1)=c(0)c(n)+c(1)c(n−1)+・・・+c(n)c(0)
が得られる.ただし,c(0)=c(1)=1とする.
これはカタラン数の漸化式であって,カタラン数c(n)はnの増加に応じて急激に増加する.
c(0)=1,c(1)=1,c(2)=2,c(3)=5,
c(4)=14,c(5)=42,c(6)=132,
c(7)=429,c(8)=1430,c(9)=4862,・・・
===================================
カタラン数の一般項は
c(n)=2nCn/(n+1)=(2n)!/(n+1)!n!
であるが,この公式は母関数を用いると簡明に得ることができる.
カタラン数の母関数を
C(x)=c(0)+c(1)x+c(2)x^2+・・・+c(n)x^n+・・・
とおく.これを2乗すると
C(x)^2=c(0)c(0)+(c(0)c(1)+c(1)c(0))x+ (c(0)c(2)+c(1)c(1)+c(2)c(0))x^2+・・・
ここで,
c(0)c(0)=c(1)
c(0)c(1)+c(1)c(0)=c(2)
c(0)c(2)+c(1)c(1)+c(2)c(0)=c(3)
であるから,
C(x)^2=c(1)+c(2)x+ c(3)x^2+・・・
次数を揃えるために,両辺にxをかけて
xC(x)^2=c(1)x+c(2)x^2+ c(3)x^3+・・・
xC(x)^2=C(x)−c(0)=C(x)−1
C(x)に関する2次方程式を解いて,母関数は
C(x)={1−(1−4x)^1/2}/2x
ここでニュートンの二項展開により,一般項
c(n)=2nCn/(n+1)=(2n)!/(n+1)!n!
が得られる.
===================================