■二色問題(その4)

【2】2色定理の応用

(問)3種類の平面充填形,正三角形(3,6),正方形(4,4),正六角形(6,3)のうち,どの隣接する2面も同じ色でないように,黒と白の市松模様に塗ることができるのはどれか?

(ヒント)これが可能なためには,1つの頂点で偶数の面が交わらなければならない.すなわち,(p,q)においてqは偶数.

 球面,トーラスなどの一般の曲面に対しても,2色塗り分け可能であれば,頂点の次数はすべて4以上の偶数である.

(問)5種類あるプラトン立体のうち,どの隣接する2面も同じ色でないように,黒と白で塗ることができるのはどれか?

(答)正八面体

===================================

【3】市松モザイク模様

 以上は,平面(空間)を合同な多角形で埋めることを考えたものですが,次に,三角形P(黒塗り)とそれを裏返した三角形Q(白塗り)の2つを交互に並べて,平面全体をタイル張りすることを考えます.たいていの場合は途中でタイル同士が重なってしまいますが,うまくいくと市松模様のタイル張りができあがります.

(問)Pがどのような形のとき,このようなタイル張り(平面の市松模様三角形タイル張り)が可能であろうか?

(答)これが可能なためには,1つの頂点で偶数個の3角形が交わらなければならないので,これを2aとおく.また,その頂点の角度をαとおくと,頂点を一回りしたので,2aα=2π.ゆえに,

  α=π/a   ただし,aは2以上の自然数.

 まったく,同様に残り2つの内角に対しても

  β=π/b,γ=π/c

 また,α+β+γ=πより

  1/a+1/b+1/c=1

 この等式を満たす(a,b,c)の組は非常に少ない.便宜上,a≧b≧cとすると

  (3,3,3) → 正三角形

  (4,4,2) → 直角二等辺三角形

  (6,3,2) → 30°,60°,90°の三角形

の3種類が得られる.

===================================

 以上の解は平面を鏡映三角形で埋めることをユークリッド面(放物的)で考えたものですが,リーマン面(楕円的),ロバチェフスキー面(双曲的)を問題にするならば,解は非常に異なるものになります.

  α+β+γ>π,=π,<π

 すなわち

  1/a+1/b+1/c>1,=1,<1

に応じて楕円幾何学,ユークリッド幾何学,双曲幾何学の三角形が得られます.

 1/a+1/b+1/c>1を満たす正の整数の組みたす(a,b,c)は高々有限個で,(n,2,2)は正2面体群,(3,3,2)は正4面体群,(4,3,2)が正8(6)面体群,(5,3,2)は正20(12)面体群に対応しています.一方,1/a+1/b+1/c<1の場合は(n≧7,3,2),(n≧5,4,2),(n≧4,3,3),(n≧3,4,3)など無限個あり,双曲幾何学における市松模様三角形タイル張りの可能性は無限にあることになります.

 すなわち,楕円的平面では基本領域は有限個しかなく,有限個の基本領域をならべることによって全平面を埋めつくすことができます.一方,双曲的平面の場合には,無限に多くの種類の基本領域があり,全平面を隙間なく埋めるには無限個必要となります.ユークリッド平面はその中間で,基本領域は有限種類しかないが,全平面を埋めつくすには無限個必要であるというわけです.

===================================