■立方体と正単体(その2)

辺の長さが2の正方形に,その頂点を中心とする4つの単位円板を置くと,4つの円板で囲まれた部分に,第5の小さな円を入れることができます.ピタゴラスの定理によって第5の円の半径は√2−1だとわかります.これと同じことを3次元空間で行ってみましょう.辺の長さが2の立方体の8つのカドに単位球を8個置くと,中にできる隙間に第9の小さな球を入れることができ,第9の球の半径は√3−1となります.n次元では半径√n−1のn次元超球が詰められるのです.

 しかし,ここの驚きが潜んでいます.たとえば,n=9の場合,中に詰められるn次元超球の半径は√9−1=2であり,この球は外側の立方体の表面に接してしまい,n>9だとはみ出してしまうのです.この驚くべき結論は,日常生活ではありえないだけに面食らってしまいます.

 

 球の詰め込みに関するこのはみ出し現象は,モーザーのパラドックスとして知られているものですが,このように,高次元はいくつかのパラドックスの源泉になっていて,しばしばたちの悪い現象が起こるのです.

===================================