■地図の接続と関数の接続(その9)
【8】雑感
ゼータ関数が整数点でとる値はわかっても,半整数点での値や複素変数での値は?と問われれば答えに窮してしまう人は多いであろうと思う.かくいう小生もそうであるし,実際,関数等式はζ(1/2)の値を与えてはくれない.
大ざっぱでしかも歯切れの悪い回答になってしまったかもしれないが,かくいう小生には一を聞けば十を悟るだけの理解力が欠如しているので,自分にわかるように,何だそうだったのかと思えるように書けば多くの人を利することができるにちがいないと思いながら解説した.
しかし,「本当にわかりやすいか?」とあらたまって問われると,筆力未熟の所以,自信はぐらついてしまうのだが,この拙文が何がしかお役に立てればと願っている.
===================================
【補】ガンマ関数・ベータ関数とレムニスケート周率
f(x)=1/(1-x^2)^(1/2)
のとき,
sin^(-1)z=∫(0,z)f(x)dx
ですから,
2∫(0,1)f(x)dx=3.141592・・・=π (円周率)
となります.それでは,
f(x)=1/(1-x^4)^(1/2)
としたとき,
∫(0,1)f(x)dx=1.311028・・・=ω (レムニスケート周率)
は,どのようにすれば得られるのでしょうか?
ガンマ関数(オイラーの第2種積分)は,
Γ(x)=∫(0,∞)t^(x-1)exp(-t)dt
ベータ関数(オイラーの第1種積分)は,
B(a,b)=∫(0,1)t^(a-1)(1-t)^(b-1)dt
によって定義されます.ベータ関数とガンマ関数との間には,
B(a,b)=Γ(a)Γ(b)/Γ(a+b)
の関係がありますから,ベータ関数はガンマ関数の兄弟分にあたります.
Γ(1)=1,Γ(1/2)=√π
であることを知っていればたいてい間に合いますが,Γ(1/2)=√πを得るにはベータ関数が用いられます.この関数において,t=sin^2θとおくと
dt=2sinθcosθdθ
ですから
B(a,b)=∫(0,1)t^(a-1)(1-t)^(b-1)dt=2∫(0,π/2)sin^(2a-1)θcos^(2b-1)θdθ
ここで,a=1/2,b=1/2とすると
B(1/2,1/2)=2∫(0,π/2)dθ=π
Γ^2(1/2)/Γ(1)=π
Γ(1)=1ですから,Γ(1/2)=√πとなります.
ベータ関数において,a=m/n,b=1/2とおき,t=x^nと置換すると,
∫(0,1)x^(m-1)/(1-x^n)^(1/2)dx=Γ(m/n)√π/nΓ(m/n+1/2)
したがって,
(m,n)=(1,1)のとき,∫(0,1)1/(1-x^1)^(1/2)dx=2
(m,n)=(1,2)のとき,∫(0,1)1/(1-x^2)^(1/2)dx=π/2
(m,n)=(1,3)のとき,∫(0,1)1/(1-x^3)^(1/2)dx=Γ^3(1/3)/2^(4/3)3^(1/2)π
(m,n)=(1,4)のとき,∫(0,1)1/(1-x^4)^(1/2)dx=Γ^2(1/4)/2^(5/2)π^(1/2)
が得られます.
レムニスケート周率ωが,
ω=Γ^2(1/4)/2^(3/2)π^(1/2)
と書けるいうわけです.
∫(0,1)1/(1-x^1)^(1/2)dx=2
∫(0,1)1/(1-x^2)^(1/2)dx=π/2
は初等的にも得ることができます.一方,
∫(0,1)1/(1-x^3)^(1/2)dx=Γ^3(1/3)/2^(4/3)3^(1/2)π
∫(0,1)1/(1-x^4)^(1/2)dx=Γ^2(1/4)/2^(5/2)π^(1/2)
は,特別な数と楕円積分を関係づけるものになっています.
これらを,Γ^q(1/q)の形で統一的に表示すれば,
Γ^2(1/2)=π=2∫(0,1)1/(1-x^2)^(1/2)dx
Γ^3(1/3)=2^(4/3)3^(1/2)π∫(0,1)1/(1-x^3)^(1/2)dx
Γ^4(1/4)=2^5π(∫(0,1)1/(1-x^3)^(1/2)dx)^2
なお,
∫(0,1)1/(1-x^3)^(1/2)dx=Γ^3(1/3)/2^(4/3)3^(1/2)π
を得るには,ガンマ関数の乗法公式(倍数公式)
Γ(x/2)Γ((x+1)/2)=π^(1/2)Γ(x)/2^(x-1)
と相反公式(相補公式)
Γ(x)Γ(1-x)=π/sinπx
また,
∫(0,1)1/(1-x^4)^(1/2)dx=Γ^2(1/4)/2^(5/2)π^(1/2)
を得るには乗法公式を用いています.
[補]∫(0,1)1/(1-x^4)^(1/2)dx・∫(0,1)x^2/(1-x^4)^(1/2)dx=π/4
===================================
【補】ディリクレ積分
ベータ関数を多変数化すると,ディリクレの積分公式
∫x1^(p1-1)・・・xm^(pm-1)(1−x1−・・・−xm)^(q-1)dx1・・・dxm
=Γ(p1)・・・Γ(pm)Γ(q)/Γ(p1+・・・+pm+q)
が得られます.→[参]高木貞治「解析概論」岩波書店,p359
3次元曲面(x/a)^p+(y/b)^q+(z/c)^r=1と3つの直角座標面によって囲まれた領域の体積積分はディリクレ積分によって
V=∫∫∫x^(u-1)y(v-1)z(w-1)dxdydz
=a^ub^vc^wΓ(u/p)Γ(v/q)Γ(w/r)/pqrΓ(1+u/p+v/q+w/r)
と表されます.
[問]3次元アステロイドの体積
x^(2/3)+y^(2/3)+z^(2/3)=a^(2/3)
V=∫∫zdxdy
を求めよ. (答)4/35πa^3
===================================