■地図の接続と関数の接続(その8)

【7】リーマン予想

 ゼータ関数の対称性はガンマ関数の対称性

Γ(s)Γ(1-s)=π/sinπs

に補ってもらうとs=1/2を対称軸とする左右対称な美しい形に書くことができることがわかりました.

 半平面Re(s)<0には自明な零点以外に零点はなく,Re(s)>1で零点をもたない・・・こうして帯状の領域0≦Re(s)≦1だけが残されたことになります.このs=1/2の軸に関する対称性に基づいて,ζ(s)の零点が自明な零点s=−2,−4,・・・,−2nと非自明な零点s=1/2+tiの線上にあるというのが有名なリーマン予想です(1859年).

 数学の巨人と称されるヒルベルトは,1919年に数学の難問について講義し,「リーマン予想は私が生きているうちに解決され,フェルマー予想は長らく未解決のままであろう」と述べたといわれています.360年ものあいだ未解決の数学的難問であったフェルマー予想は1994年,ワイルスによって証明されました.

 しかし,ヒルベルトの推測に反し,リーマン予想は依然としてデッドロック状態にあります.リーマン予想は一部に素数定理なども含む数学上の最大の難問であって,いまだ未解決なのです.

 ヒルベルトがパリ問題において,リーマン予想と2^(√2)の超越性の証明の難しさを評価することに失敗したことは,たとえ数学の巨人と呼ばれる人であっても,将来を予言することがいかに難しいかを意味する有名な例として,しばしば引用されています.予想がどれほど的中しないかという例は,科学史上いくらでも求めることができます.予言が的中しないのは予言者の不明に帰すべきでなく,未来を占うことの困難さを教えてくれるのです.

===================================

【4】Re(s)<0のとき(関数等式)

 オイラー・マクローリンの和公式は,ベルヌーイ数B2kを使えばさらに左側に進むことができます.

  ζ(s)=1/(s-1)+1/2+ΣB2ks(s+1)・・・(s+2k-2)/(2k)!-s(s+1)・・・(s+2m)∫(1,∞)(-1)^(m-1)Σ2sin2πnx/(2πn)^(2m+1)/x^(s+2m+1)dx

右辺の積分はRe(s)>-2mであれば存在し,s>-2m,s≠1なるすべてのsについて定義することができます.

 しかし,このような区分的な解析接続ではなく,もっとうまい手があります.結論を先にいうと,sを複素変数とするとき,関数等式

  ζ(s)=π^(s-1/2)Γ((1-s)/2)/Γ(s/2)ζ(1-s)

を用いればζ(s)をs=1(極)を除くすべての複素数に対して意味をもたせることができ,sを−1とすると値が−1/12,2とすると値が0になるというわけです.Γはガンマ関数です.

 また,

ξ(s)=1/2s(s-1)π^(-s/2)Γ(s/2)ζ(s)

あるいは

ξ(s)=π^(-s/2)Γ(s/2)ζ(s)

で定義すると

ξ(s)=ξ(1-s)

のように完全に左右対称な美しい形に書くことができます.ガンマ関数はゼータ関数の仲間と思ってほしい所以です.

 関数等式は

(1)sを複素変数として複素全平面への解析接続を与えることができること

(2)ζ(s)がRe(s)=1/2を対称軸とする美しい対称性をもっていること

を示しています.

===================================