■佐藤sin^2予想の解決(その4)

【4】佐藤・テイト予想の解決

 角分布がsin^2θに比例するという佐藤予想の最初の記述は,資料によると,昭和38年(1963年)のことなのですが,sin^2予想でt=cosθとおけば,

  偏角が[a,b]となる素数密度 〜 2/π∫(α,β)√(1-t^2)dt

となりますから,これも1種の半円則となっていることがわかります.

 佐藤・テイト予想には,多くの言い換えがあって,

(1)x^2+Mpx+p=0

の解を

  x=√pexp(iθ)=√p(cosθ±isinθ)

とするとき,その角分布はsin^2θに比例する

(2)Mp/2√pが√(1−x^2)に比例する

(3)ハミルトンの4元数環(フルヴィッツの整数):(a+bi+cj+dk)/2の半径pの格子点3次元球面:a^2+b^2+c^2+d^2=4pの一様分布の実軸方向への射影である

といっても同じことです.

 佐藤予想は現在も未解決で,リーマン予想に匹敵する予想であるといわれています.ところが,驚いたことに2006年になって,ハーバード大学のリチャード・テイラーによって佐藤予想の楕円曲線版(佐藤・テイト予想と呼ばれる)が証明されました.佐藤予想そのものの証明ではないにせよ,100年に一度の大発展といえるのです.

===================================