■平面代数曲線(その1)
2変数x,yの多項式f(x,y)=0で定義される曲線を平面代数曲線と呼びます.f(x,y)=0が2次式の場合,その一般式は,
ax^2+hxy+by^2+cx+dy+e=0
のごとく,項数6の多項式として書くことができます.2次曲線には楕円,放物線,双曲線があり,それらは円錐(必ずしも直円錐でなくてよい)を平面で切断したときの切り口として現れる一群の曲線,すなわち円錐曲線です.
同様に,3次曲線とはf(x,y)=0が2変数x,yの3次あるいは3次以下の方程式で与えられた曲線です.3次曲線の一般式の項数は10になります.平面内n次曲線f(x,y)=0の一般式の項数は,
3Hn=n+2Cn=(n+2)(n+1)/2
で計算されます.
n次平面代数曲線の方程式f(x,y)=0は,(n+1)(n+2)/2個の係数をもっていますが,fに定数を掛けても曲線は変わりませんから,n次曲線は
(n+1)(n+2)/2−1=n(n+3)/2
個のパラメータに依っていることになります.
そこで,平面内に与えられたn(n+3)/2個の点(xi,yi)を通るという条件によって曲線を決定するという問題が自然に提起されます.ニュートンはこうした研究を応用して,2次曲線上の5点,3次曲線上の9点が与えられた場合にこれを作図する方法を見いだしています.
===================================
2次曲線の分類については,3種類の円錐曲線,すなわち楕円,双曲線,放物線になることは既に述べたとおりですが,同じことをもっと高次の曲線に対して考えるのは自然なことでしょう.3次曲線の分類には,2次曲線とは異なった種類の難解さが要求されましたが,ニュートンはあらゆる場合を考察して,最終的に3次曲線は全部で78種類が必要であることを示すに至り,さらに3次曲線の一般式が5個の標準形に帰することを示しました.(ニュートンは72個の型を得,彼の後継者たちがニュートンの発見しなかった6個の型を追加しています.)
ニュートンの3次曲線の分類に引き続いて,オイラーは4次平面曲線の分類を企てましたが,可能な場合の数が非常に多いという理由で断念しています.この問題に対する答えは長い間知られていなかったのですが,プリュッカーが19世紀に4次曲線の152の型を数え上げることによって解かれました.
===================================