■有理曲線のパラメトライズ(その2)

(4次曲線)

 2定点(−a,0),(a,0)からの距離の和が一定となる点の軌跡は楕円,差が一定の点の軌跡は双曲線です.また,商が一定の点は円(アポロニウスの円)を描きます.それでは積が一定の点はどのよう軌跡を描くでしょうか.

 

(答)はカッシーニ曲線.

  {(x+a)^2 +y^2 }{(x−a)^2 +y^2 }=c^2

  (x^2 +y^2 )^2 −2a^2 (x^2 −y^2 )=c^2 −a^4

  r^4 −2a^2 r^2 cos2θ+a^4 =c^2

 2次の多項式f(x,y)=0,すなわち楕円,放物線,双曲線が円錐を平面で切断したときの切り口として現れたように,カッシーニ曲線はトーラス(ドーナツ)の平面による切断面として現れることが知られています.

 

 定数cが2定点間の距離の半分aの2乗に等しいとき,レムニスケート(双葉曲線)と呼ばれます.レムニスケートは8の字形(8を90°回転させ横向きにした∞形)をしていて,その直交座標系での方程式は4次曲線(x^2 +y^2 )^2 =2a^2 (x^2 −y^2 ),極座標系ではr^2 =2a^2 cos2θとなります.とくに,2定点を(−1/√2,0),(1/√2,0)と定めると,レムニスケートの方程式は極座標で書くとr^2 =cos2θ,直交座標で書くと(x^2 +y^2 )^2 =x^2 −y^2 となります.したがって,極座標による式のほうが,直交座標による式よりかるかに簡単です.

 

 また,a=1/√2のとき,レムニスケートは,

  x=cosθ/(1+sin^2θ)

  y=sinθcosθ/(1+sin^2θ)

ここで,

  t=tan(θ/2)

を使うと

  sinθ=2t/(1+t^2)

  cosθ=(1−t^2)/(1+t^2)

と表示されますから,

  x=t(t^2+1)/(1+t^4 )

  y=−t(t^2−1)/(1+t^4 )

のようにパラメトライズすることができます.

 

 レムニスケートには円に共通する性質があり、定規とコンパスだけで奇数のn等分することができる必要十分条件はnがフェルマー素数(n=22^m+1の形の素数:3,5,17,257,65537)であることです.なお,

  x^2 +y^2 −z^2 +(x^2 +y^2 +z^2)^2 =0

は,レムニスケートをその主軸の回りに回転することによって生成される曲面です.

 

===================================