■有理曲線のパラメトライズ(その1)

 曲線上の有理点全体を1つの変数の有理式として表すことのできる曲線を有理曲線といいます.楕円曲線は有理曲線でないことが知られています.

 

 

===================================

(2次曲線)

 原点を中心とする半径1の円:x^2+y^2=1の円周上のひとつの有理点が(0,1)です.この点を通る直線y=mx+1と単位円との交点は,代入して因数分解すれば

  x^2+(mx+1)^2=1

  x((1+m^2)x+2m)=0

より

  x=(2m)/(1+m^2),

  y=mx+1=(1−m^2)/(1+m^2)

と表すことができます.これによって,円周上の点(x,y)が有理点であるためには,mが有理数であることが必要十分条件であることがわかります.すなわち,単位円上のすべての有理点は,mの関数

  x=(2m)/(1+m^2),

  y=±(1−m^2)/(1+m^2)

で表すことができます.

 

 x^2+y^2=2(半径√2の円)において(1,1)は有理点で,この点を通る直線の方程式:y−1=m(x−1)を(x^2−1)+(y^2−1)=0に代入して因数分解すると

  x=(m^2−2m−1)/(m^2+1)

  y=(−m^2−2m+1)/(m^2+1)

が得られます.m=∞に対応する(1,−1)も有理点です.

 

 このように,円の有理点全体は1つの変数mによって一意化できますが,円ばかりではなく,現在では2次曲線に1つでも有理点があると実は無限に有理点があることがわかっています.2次曲線は有理点を無限のもつか,1つももたないかのどちらかであって,たとえば,x^2+y^2=3(半径√3の円)の上には有理点は1つも存在しません.このことは,互いに素な整数a,bに対する平方の和a^2+b^2は3で割れないということからわかります.

 

===================================

(3次曲線)

 デカルトの正葉線:x^3−3axy+y^3 =0(a>0) は原点(0,0)を通ったところでループを描き自分自身と交差し,その後はy=−x−aを漸近線とする長くゆるやかに曲がった弓形曲線を描きながら(∞,−∞),(−∞,∞)に遠ざかっていきます.すなわち,x+y+a=0を漸近線とする3次曲線ですが,原点(0,0)が有理点ですから,y=mxとおくことによってパラメータ表示の形に書くことができます.

  x=3am/(1+m^3),

  y=3am^2/(1+m^3)

 

 この3次曲線は重根をもち,原点(0,0)が特異点になります.そのため,この曲線上のすべての有理点を,このようにパラメトライズすることができました.同様に,y^2=x^3やy^2=x^2(x+1)は楕円曲線ではありません.前者は(t^3,t^2),後者は(t^2−1,t(t^2−1))とパラメトライズできます.一般に,f(x,y)=0が3次式のとき,その曲線上に特異点と呼ばれる点が存在するかどうかで,曲線のもつ性質が大きく異なってきます.

 

===================================