■平方和分割とテータ関数(その30)

 ときに仰天させられる結果に出会うことがある.今回のコラムでは,正の整数nを2つの整数の平方和で表す方法:n=x^2+y^2が平均してπ通りあることを紹介する.

===================================

【1】ラグランジュの定理(4平方和定理)

 「すべての正の整数は高々4個の整数の平方和で表される」というのが,ラグランジュの定理です.すなわち,ラグランジュの定理は4次元空間内の原点を中心とする半径√nの球面には必ず格子点があることを主張しているわけです.半径√nの2次元の円,3次元の球には格子点が存在するとは限らないのです.

 4=(±1)^2+(±1)^2+(±1)^2+(±1)^2   16通り

 4=(±2)^2+0^2+0^2+0^2            +8通り

のように,順列,符号,0を含む4個の平方数による分割

  n=x1^2+x2^2+x3^2+x4^2

の解の個数をR(n)で表せば,1829年,ヤコビは

  R(n)= 8Σ(2d+1)   n≡1(mod 2)

  R(n)=24Σ(2d+1)   n≡0(mod 2)

   Σは(2d+1)|nをわたる

を示しました.すなわち,4で割り切れないnの約数の8倍です.

  R(4)=8(1+2)=24

 この出発点となった考え方は,

  {Σq^(n^2)}^4=ΣR(n)q^n

   =1+8nq^n/(1-q^n)

の2つの表現のq^nの係数を比較することであって,Σq^(n^2)はテータ関数です.R(n)を求めるのにヤコビはテータ関数を用いたのですが,それ以来,モジュラー形式などの解析的理論が数論へ応用されるようになり,ヤコビは2,4,6,8個の平方の和に分解する仕方の数,エルミートは3,5個の平方の和に分解する仕方の数を得ています.

===================================