■サイクロイドと積分・変分法

 サイクロイドにはいくつかの興味深い特性があります.

===================================

(1)等時曲線 ホイヘンスはサイクロイドが等時曲線であることを発見しました.等時曲線であるサイクロイドを用いると,周期が振幅に依存しない正確に等時性をもった振り子が作れます.サイクロイド振り子の周期は,回転円の半径をrとすると

  T=4π√r/g

です.

(2)最速降下線

 1696年,ベルヌーイによってヨーロッパ中の優れた数学者に対して,重力だけの作用の下で滑らかな曲線に沿って運動するとき,到達時間が最小になるような曲線は何か?という「最速降下線」の問題が提出されました.ニュートンは直ちにこれを解き,匿名で解答を送ったが,ベルヌーイはその解法を見てすぐに解答者を知ったという逸話は余りにも有名です.その答えがサイクロイドだったのです.そして,重力場において2点間を滑りおりる最短時間の曲線の問題を解決するために工夫された方法が,のちに変分学に発展しました.

 

 サイクロイドはそもそもガリレイによって発見され,ホイヘンスによって振子時計の設計に使われ,そしてパスカルの積分法の研究にも貢献しています.サイクロイド弧が囲む面積は3πr^2 (回転円の面積の3倍に等しい),弧長は8r(回転円に外接する正方形の周に等しい)になります.

===================================