■病的な数学(その2)

【3】バナッハ・タルスキーのパラドックス

 多面体を切り貼りしても体積は変わらないのですが,曲面で囲まれた立体ということになると,もはやその常識は通用しなくなります.1924年,バナッハとタルスキーは,球を有限個の小片に分割し,再結合させると元と同じ大きさの2つの球を作ることを示しました.したがって,元と同じ球体を好きな個数だけ作ることができることになります.

 このあまりにも奇妙な結論からパラドックスと呼ばれますが,れっきとした現代数学の定理です.数学が「無限」を扱うようになったために生ずる奇妙な定理なのですが,バナッハ・タルスキーの定理でいう球体とは物質としての球ではなく,空間中の点の集まり(集合)のことで,分割とは物質の分割ではなく,集合の分割のことです.

 また,球を円に代えて,平面でもバナッハ・タルスキーの定理と同じことがいえるかというとそれはできません.2次元と3次元では事情が異なっているのですが,この奇妙さの源は「体積」という概念にあるのです.

 デーンの定理やバナッハ・タルスキーのパラドックスは,平面幾何学の面積の理論には連続の公理を必要とはしないが,体積の理論を作るにはカヴァリエリの原理のような他の超越的な補助手段を採用しなければならないことを意味しています.

===================================

これが真ならばいくらでも錬金術が可能ということになりますが、残念ながらこの定理は現実世界では成り立ちません。数学の集合の世界と現実の世界は同じではないのです。

[補]1914年,ハウスドルフは球面がK=A+B+C+Qに分解される,A,B,C,B+Cは合同,Qは可算集合であることを証明した.これからAの面積は球面の面積の1/3とも1/2ともなるので矛盾する.1953年,シェルピンスキーは,ハウスドルフが考案した逆説を改良し,球面(と球)を有限個の小片に分割し再結合させると元と同じ大きさの2つの球面(と球)を作ることを示しました.したがって,元と同じ球体を好きな個数だけ作ることができることになります.(シェルピンスキーはハウスドルフ,バナッハ・タルスキー両方のパラドックスを改良をしたことになる.)

 また,バナッハ・タルスキーの有限分解合同定理を言い換えれば,空間において面積と体積は非可測な断片に分解することによって保存されないというものです.このあまりにも奇妙な結論からパラドックスと呼ばれますが,れっきとした現代数学の定理です.数学が「無限」を扱うようになったために生ずる奇妙な定理なのですが,バナッハ・タルスキーの定理は「選択公理」を仮定しないと証明できないのです.

[補]タルスキーの問題「円板を有限個の破片に分けて,集めて同じ面積の正方形にすることができるか」は,1990年になっておよそ10^50個の破片を使って可能であることがラスコヴィッチによって証明された.ある意味,円積問題(円の面積に等しい正方形を作図する)は不可能ではなかったことになる.

===================================