■(√(28/27)+1)^1/3−(√(28/27)−1)^1/3は整数である(その7)

 フェルマーはy^3=x^2+2のの正整数による唯一の解は(x,y)=(5,3)であると主張した.

===================================

x^2+2=(x+i√2)(x−i√2)

(x+i√2)=(a+bi√2)^3

=a^3+3a^2bi√2−6ab^2−2b^3i√2

=(a^3−6ab^2)+(3a^2b−2b^3)i√2

=a(a^2−6b^2)+b(3a^2−2b^2)i√2

(x+i√2)→a(a^2−6b^2)=x,b(3a^2−2b^2)=1

b=±1とすると,(3a^2−2)=±1→b=1のときa=±1

(1,1)→a(a^2−6b^2)=−5=x   (NG)

(−1,1)→−a(a^2−6b^2)=5=x  (OK)

さらにy=3.よって,フェルマーの主張が示された.

===================================