■フェルマー数の約数(その3)
【4】オイラーとフェルマー素数
p|F5ならば2^6|p−1
すなわち,p=1+k・2^6の形でなければならないことがわかります.kに1〜10まで入れると
k 1+k・2^6 素数
1 65 ×
2 129 ×
3 193 ○
4 257 ○
5 321 ×
6 385 ×
7 449 ○
8 513 ×
9 577 ○
10 641 ○
ここで得られた素数193,257,449,577,641の中から,F5=4294967297を割るものを探すと641が最初のものであることがわかります.このことから
F5=4294967297=641×6700417
と分解されF5が素数でないことが証明されます(1732年).
ついでながら,6700417が素数であることは次のようにしてわかります.
p|6700417 → p|F5 → p=1(mod64)
したがって,p=1(mod64)なる素数で,√6700417=2588.5・・・より小さいものが,どれも6700417を割らないことをみればよいことになります.このような素数は193,257,・・・,1601,2113の11個あります.
===================================