■平方剰余と・・・(その47)

[補]互いに素な整数a,bに対する平方の和a^2+b^2は3で割れない.

 

  a=3k   → a^2=9k^2

  a=3k+1 → a^2=9k^2+6k+1

  a=3k+2 → a^2=9k^2+12k+4

より,a^2を3で割ったときの余りは0か1になります.0になるのはaが3の倍数のときです.

 

 b^2に対しても同じことが成り立ちますから,a^2+b^2を3で割ると,余りは0+0,0+1,1+0,1+1にしかなりません.0+0はaもbも3の倍数であることに対応していて,仮定に反します.さらにまた,別の例を挙げてみましょう.

===================================

 

[補]4n+3の数はa^2+b^2の形にならない.

 

  a=4k   → a^2=0  (mod 4)

  a=4k+1 → a^2=1  (mod 4)

  a=4k+2 → a^2=0  (mod 4)

  a=4k+3 → a^2=1  (mod 4)

したがって,a^2+b^2を4で割ったときの余りは0+0,0+1,1+0,1+1にしかならないので,この主張が示されました.

===================================