■可積分系とテータ関数(その19)
n次元正多胞体ではどうだろうか?
===================================
[1]正軸体
vol(βn)/(2l)^n=2^n/2/n!
I(βn)/(2l)^2=n/(n+1)(n+2)
G(βn)=(n1)^2/n/2(n+1)(n+2)
→1/2e^2=0.0676676
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[2]球
vol(Sn)/r^n=π^n/2/Γ(n/2+1)
I(Sn)=nr^2/(n+2)
G(Sn)=Γ(n/2+1)^2/n/(n+2)π
→1/2πe=0.0585498
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[3]正単体
vol(αn)/(√2l)^n=(n+1)^1/2/n!
I(αn)/(√2l)^2=n/(n+1)(n+2)
G(βn)=(n1)^2/n/(n+1)^(1+1/n)(n+2)
→1/e^2=0.135335
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[4]立方体(正測体)
G(γn)=0.0833333=1/12
===================================