■可積分系とテータ関数(その19)

 n次元正多胞体ではどうだろうか?

===================================

[1]正軸体

  vol(βn)/(2l)^n=2^n/2/n!

  I(βn)/(2l)^2=n/(n+1)(n+2)

  G(βn)=(n1)^2/n/2(n+1)(n+2)

→1/2e^2=0.0676676

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[2]球

  vol(Sn)/r^n=π^n/2/Γ(n/2+1)

  I(Sn)=nr^2/(n+2)

  G(Sn)=Γ(n/2+1)^2/n/(n+2)π

→1/2πe=0.0585498

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[3]正単体

  vol(αn)/(√2l)^n=(n+1)^1/2/n!

  I(αn)/(√2l)^2=n/(n+1)(n+2)

  G(βn)=(n1)^2/n/(n+1)^(1+1/n)(n+2)

→1/e^2=0.135335

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[4]立方体(正測体)

 G(γn)=0.0833333=1/12

===================================