■レムニスケートの等分点とテータ関数(その13)

 P1(x)=1,Q1(x)=1

  sl(2u)=2sl(u)sl'(u)/(1+sl^4(u))より

 P2(x)=2,Q2(x)=1+x

Q3(x)=Q1(x){Q2^2(x)+x(1-x)P2^2(x)}

=(1+x)^2+4x(1-x)=1+6x-3x^2

P3(x)=2(1-x)P2(x)Q2(x)Q1(x)-P1(x){Q2^2(x)+x(1-x)P2^2(x)}

=4(1-x)(1+x)-{(1+x)^2+4x(1-x)}

=4-4x^2-{1+6x-3x^2}

=3-6x-x^2

===================================

Q4(x)=Q2(x){Q3^2(x)+xP3^2(x)}

=(1+x){(1+6x-3x^2)^2+x(3-6x-x^2)^2}

=(1+x){1+36x^2+9x^4+12x-36x^3-6x^2

+9x+36x^3+x^5-36x^2+12x^4-6x^3}

=(1+x){1+21x-6x^2-6x^3+21x^4+x^5}

=(1+x)^2{1+20x-26x^2+20x^3+x^4}

P4(x)=2P3(x)Q3(x)Q2(x)-P2(x){Q3^2(x)+xP3^2(x)}

=2(3-6x-x^2)(1+6x-3x^2)(1+x)-2(1+x){1+20x-26x^2+20x^3+x^4}

=2(1+x){3+12x-46x^2+12x^3+3x^4-1-20x+26x^2-20x^3-x^4}

=2(1+x){2-8x-20x^2-8x^3+2x^4}

=2(1+x)^2{2-10x-10x^2+2x^3)

=4(1+x)^3{1-6x+x^2)

最大公約数因子で割って

Q4(x)={1+20x-26x^2+20x^3+x^4}

P4(x)=4(1+x){1-6x+x^2)

===================================

Q5(x)=(1-2x+5x^2)(1+52x-26x^2-12x^3+x^4}

P5(x)=(5-2x+x^2)(1-12x-26x^2+52x^3+x^4}

係数の表現の対称性がおもしろい.

===================================