■算術幾何平均とテータ関数(その8)
(その5)において
L(a,1)=L(cosθ,1)=sinθ/θ=
=(a^2−1)^1/2/log(a+(a^2−1)^1/2)
∫dx/(x^2−1)^1/2=log(x+(x^2−1)^1/2)
(log(x+(x^2−1)^1/2)’=1/(x^2−1)^1/2
===================================
t=x+(x^2−1)^1/2とおく.
x=(t^2+1)/2t,dx=(t^2−1)/2t^2dt
(x^2−1)^1/2=t−x=(t^2−1)/2t
したがって,
∫dx/(x^2−1)^1/2=∫2t/(t^2−1)・(t^2−1)/2t^2dt
=∫dt/t=logt=log(x+(x^2−1)^1/2)
===================================
したがって,
L(a,1)=L(cosθ,1)=sinθ/θ=
=(a^2−1)^1/2/log(a+(a^2−1)^1/2)
=(a^2−1)^1/2/∫(1,a)dx/(x^2−1)^1/2
===================================