■四角形の面積と角錐台の体積(その19)

[1]16S^2+16abcdcos^2θ=(a^2+b^2+c^2+d^2)^2−2(a^4+b^4+c^4+d^4)+8abcd

16S^2+8abcd(2cos^2θ−1)=(a^2+b^2+c^2+d^2)^2−2(a^4+b^4+c^4+d^4)

16S^2+8abcdcos2θ=(a^2+b^2+c^2+d^2)^2−2(a^4+b^4+c^4+d^4)

[2]4(d1d2)^2sin^2φ+16abcdcos^2θ=(a^2+b^2+c^2+d^2)^2−2(a^4+b^4+c^4+d^4)+8abcd

4(d1d2)^2sin^2φ+8abcd(2cos^2θ−1)=(a^2+b^2+c^2+d^2)^2−2(a^4+b^4+c^4+d^4)

4(d1d2)^2sin^2φ+8abcdcos2θ=(a^2+b^2+c^2+d^2)^2−2(a^4+b^4+c^4+d^4)

を検してみたい.

===================================

[1]正方形(a=b=c=d=1),cos^2θ=0

  d1^2=2,d2^2=2,S=1

  16=4^2−2・4+8

  4・4・sin^2φ=16→ φ=π/3

[2]長方形(a=c=1,b=d=√3),cos^2θ=0

  d1^2=4,d2^2=4,S=√3

  16・3=8^2−2・20+24

  4・16・sin^2φ=48→ φ=π/3

===================================