■フェルマー素数と正十七角形(その41)

 (その38)(その39)の続き.

 sin(2π/41)+sin(20π/41)+sin(32π/41)+sin(36π/41)+sin(49π/41)

[1]1/8(A+B-C)^1/2=1.58666

  A=164+12√41

  B=(14+2√41)(82-10√41)^1/2

  C=16(82+10√41)^1/2

[2]1/4(D-E)^1/2=1.58666

  D=41+3√41

  E=(410-2√41)^1/2

===================================

[1]1/8(A+B-C)^1/2=1.58666

  A=164+12√41

  B=(14+2√41)(2・41-10√41)^1/2

  C=16(2・41+10√41)^1/2

  A=4(41+3√41)

  B=(14+2√41)(2)^1/2(41-5√41)^1/2

  C=16・(2)^1/2(41+5√41)^1/2

B=(14+2√41)(2)^1/2(41-5√41)/(41-5√41)^1/2

=(164+12√41)(2)^1/2/(41-5√41)^1/2

=(164+12√41)(2)^1/2・(41+5√41)^1/2/4√41

=(√41+3)(2)^1/2・(41+5√41)^1/2

B-C=(√41-13)(2)^1/2・(41+5√41)^1/2

=(√41-13)(82+10√41)^1/2

-B+C=-{(210-26√41)(82+10√41)}^1/2

=-{17220-10660+(2100-2132)√41}^1/2

=-{6560-32√41}^1/2

=-4{410-2√41}^1/2

A-B+C=4(41+3√41)-4{410-2√41}^1/2

1/8(A+B-C)^1/2=1/4{(41+3√41)-{410-2√41}}^1/2=1/4(D-E)^1//2

===================================