■フェルマー素数と正十七角形(その25)

[1]sinπ/7+sin3π/7+sin5π/7=T

[2]−sin(π/7)+sin(3π/7)+sin(5π/7)=(√7)/2

[1]・[2]より

[3]{sin(3π/7)}^2+{sin(5π/7)}^2+2sin(3π/7)sin(5π/7)−{sin(π/7)}^2=T(√7)/2

===================================

  (sinπ/7)^2+(sin3π/7)^2+(sin5π/7)^2=112/64

  (sin3π/7)^2+(sin5π/7)^2=112/64−(sinπ/7)^2

  (sinπ/7)^2(sin3π/7)^2(sin5π/7)^2=7/64

  (sin3π/7)^2(sin5π/7)^2=7/64(sinπ/7)^2を[3]に代入すると

112/64−(sinπ/7)^2+2√7/8(sinπ/7)−{sin(π/7)}^2=T(√7)/2

112(sinπ/7)/64−(sinπ/7)^3+2√7/8−{sin(π/7)}^3=T(√7)(sinπ/7)/2

7(sinπ/7)−4(sinπ/7)^3+√7−4{sin(π/7)}^3=T(2√7)(sinπ/7)

8(sinπ/7)^3+(2T√7−7)(sinπ/7)−√7=0

 うまくTを求めることはできるだろうか?

===================================

 sin(π/7)は32x^5−48x^3+14x−√7=0の根である.

を用いても求められそうにない.

===================================