■フェルマー素数と正十七角形(その19)
(その8)(その9)を再検.
[1]sin(2π/7)+sin(4π/7)+sin(8π/7)
=−sin(π/7)+sin(3π/7)+sin(5π/7)=S
正弦の和公式において,α=π/(2n+1)とおくと,
Σsin(2k−1)π/(2n+1)=sin^2nπ/(2n+1)/sinπ/(2n+1)
[2]sin(π/7)+sin(3π/7)+sin(5π/7)=sin^23π/7/sinπ/7=(−4sin^3π/7+3sinπ/7)^2/sinπ/7=16sin^5π/7−24sin^3π/7+9sinπ/7
[3] [2]−[1]=2sin(π/7)=16sin^5π/7−24sin^3π/7+9sinπ/7−S
[4]sinπ/7=xとおくと
16x^5−24x^3+7x−S=0
32x^5−48x^3+14x−√7=0
[5]x=0.433883のとき,
32x^5−48x^3+14x−√7=0が成り立つ.
===================================