■三角関数とガウス和(その18)
sinx=16sin^5x/5−20sin^3x/5+5sinx/5
=sinx/5(16sin^4x/5−20sin^2x/5+5)
=sinx/5(16cos^4x/5−12cos^2x/5+1)
=sinx/5(4cos^2x/5+2cosx/5−1)(4cos^2x/5−2cosx/5−1)
sinx/5=sinx/5^2(4cos^2x/5^2+2cosx/5^2−1)(4cos^2x/5^2−2cosx/5^2−1)
したがって,
sinx=
=5^2sinx/5^2・(4cos^2x/5+2cosx/5−1)/5(4cos^2x/5^2+2cosx/5^2−1)/5・(4cos^2x/5−2cosx/5−1)(4cos^2x/5^2−2cosx/5^2−1)
=・・・・・
=5^ksinx/5^k・Π(4cos^2x/5^k+2cosx/5^k−1)/5Π(4cos^2x/5^k−2cosx/5^k−1)
k→∞のとき,limsinx/5^k/(x/5^k)
=1/x・lim5^ksinx/5^k=1
lim5^ksinx/5^k=x
また,|4cos^2x/5^k−2cosx/5^k−1|≦1より
limΠ(4cos^2x/5^k−2cosx/5^k−1)=1
以上より,
sinx/x=Π(4cos^2x/5^k+2cosx/5^k−1)/5
が示される.
===================================