■三角関数とガウス和(その9)
2cos(2π/7)-2cos(π/7)+2cos(4π/7)=-1
2sin(2π/7)-2sin(π/7)+2sin(4π/7)=√7
4cos(2π/13)-4cos(5π/13)+4cos(6π/13)=√13-1
と計算された。
===================================
なお,
[参]栗原将人「ガウスの数論世界をゆく」数学書房によると
[1]sin(2π/7)+sin(4π/7)+sin(8π/7)=(√7)/2
[2]sin(2π/13)+sin(6π/13)+sin(18π/13)=(26−6√13)^1/2/4
[3]sin(2π/41)+sin(20π/41)+sin(32π/41)+sin(36π/41)+sin(49π/41)=1/8(A+B−C)^1/2
A=164+12√41
B=(14+2√41)(82−10√41)^1/2
C=16{82+10√41)^1/2
===================================