■三角関数の和公式(その2)

  (n,0)+(n,3)+(n,6)+・・・=(2^n+2cos(nπ/3))/3

であったが,

  (n,1)+(n,4)+(n,7)+・・・=(2^n+2cos((n−2)π/3))/3

  (n,2)+(n,5)+(n,8)+・・・=(2^n+2cos((n−4)π/3))/3

 一般に

  (n,k)+(n,m+k)+(n,2m+k)+・・・=1/m・Σ(2cosjπ/m)^n・cos(j(n−2k)π/m)

===================================