■円分多項式と正多角形(その41)
【2】cos(π/9)
x=cos(π/9)とおくと,3倍角の公式
4x^3−3x=cos(π/3)=1/2
より,3次方程式:8x^3 −6x−1=0に帰着します.
あるいは,θ=π/9,cosθ=xとおくと
9θ=π,5θ=π−4θ
より,
cos5θ=−cos4θあるいはsin5θ=sin4θ
前者は5次方程式
16cos^5θ−20cos^3θ+5cosθ=−8cos^4θ+8cos^2θ−1
となるが,後者は
16sin^5θ−20sin^3θ+5sinθ=8sinθcos^3θ−4sinθcosθ
16sin^4θ−20sin^2θ+5=8cos^3θ−4cosθ
よりcosθ関する3次方程式に帰着するというわけである.
===================================