■円分多項式と正多角形(その10)
μ(n)=1 (n=1、nが偶数個の相異なる素数の積)
μ(n)=0 (nが平方数によって割り切れる)
μ(n)=-1 (nが奇数個の相異なる素数の積)
μ(1)=1,μ(2)=-1,μ(3)=-1,μ(4)=0
μ(5)=-1,μ(6)=1,μ(7)=-1,μ(8)=0
μ(9)=0,μ(10)=1,
メビウス関数を使って、P(n)=x^n−1の因数分解
Pn(x)=x^n−1=ΠΦk(x)
が可能である。ここで、
Φn(x)=Π(x^d-1)^μ(n/d)
で与えられる。円分方程式の因数分解の方法はこれ以外にもいくつか知られているが、ここではそれとは異なる観点からの因数分解を紹介したい。
===================================
x^n−1の因数分解が,nの約数dを使って次のように書かれることを考えます.
x−1=Φ1(x)
x^2−1=Φ1(x)Φ2(x)
x^3−1=Φ1(x)Φ3(x)
x^4−1=Φ1(x)Φ2(x)Φ4(x)
x^5−1=Φ1(x)Φ5(x)
x^6−1=Φ1(x)Φ2(x)Φ3(x)Φ6(x)
・・・・・・・・・・・・・・・・・・・・・・・
x^18−1=Φ1(x)Φ2(x)Φ3(x)Φ6(x)Φ9(x)Φ18(x)
x^36−1=Φ1(x)Φ2(x)Φ3(x)Φ4(x)Φ6(x)Φ9(x)Φ12(x)Φ18(x)Φ36(x)
すると,円分多項式は
Φ1(x)=x−1
Φ2(x)=x+1
Φ3(x)=x^2+x+1
Φ4(x)=x^2+1
Φ5(x)=x^4+x^3+x^2+x+1
Φ6(x)=x^2−x+1
Φ7(x)=x^6+x^5+x^4+x^3+x^2+x+1x−1
Φ8(x)=x^4+1
Φ9(x)=x^6+x^3+1
Φ12(x)=x^4−x^2+1
Φ15(x)=x^8−x^7+x^5−x^4+x^3−x+1
Φ16(x)=x^8+1
Φ18(x)=x^6−x^3+1
Φ24(x)=x^8−x^4+1
Φ36(x)=x^12−x^6+1
と定まります.
===================================
[1]Φ(x)において、y=x+1/x=2cosθとおくと、円分方程式は複素数解を持つ形から、実数解-2<y<をもつ形の相反方程式Ψ(y)に変換される。
[2]ΠΨ(y)は実数解-1<z<1をもつ形T(z), U(z)に変換される。これがチェビシェフ多項式である。
===================================