■テータ関数と格子(その53)
[1]nが8の倍数であるとき,偶ユニモジュラー格子が存在する.
===================================
4=(±1)^2+(±1)^2+(±1)^2+(±1)^2 16通り
4=(±2)^2+0^2+0^2+0^2 +8通り
のように,0^2を含め,さらに,a^2と(−a)^2を異なる方法として数える.また,順序が異なるもの(a^2+b^2とb^2+a^2)を区別して数えることにする.
4=(±1)^2+(±1)^2+(±1)^2+(±1)^2 16通り
4=(±2)^2+0^2+0^2+0^2 +8通り
のように,4個の平方数による分割
n=x1^2+x2^2+x3^2+x4^2
の解の個数をR(n)で表せば,1829年,ヤコビは
R(n)= 8Σ(2d+1) n=1(mod 2)
R(n)=24Σ(2d+1) n=0(mod 2)
Σは(2d+1)|nをわたる
を示しました.
この出発点となった考え方は,
{Σq^(n^2)}^4=ΣR(n)q^n
=1+8nq^n/(1-q^n)
の2つの表現のq^nの係数を比較することであって,Σq^(n^2)はテータ関数です.R(n)を求めるのにヤコビはテータ関数を用いたのですが,それ以来,モジュラー形式などの解析的理論が数論へ応用されるようになり,ヤコビは2,4,6,8個の平方の和に分解する仕方の数,エルミートは3,5個の平方の和に分解する仕方の数を得ています.
===================================