■ヨハン・アルブレヒト・オイラーの不等式(その40)
x^4+y^4+z^4+w^4−4xyzw
=(x^2−y^2)^2+(z^2−w^2)^2+2(xy−zw)^2
x^4+y^4+z^4+w^4
=(x^2−y^2)^2+(z^2−w^2)^2+2(xy)^2+2(zw)^2
x^2+y^2+z^2+w^2
=(x−y)^2+(z−w)^2+2(xy)+2(zw)
6(a^2+b^2+c^2+d^2)^2
=(a+b)^4+(a−b)^4+(c+d)^4+(c−d)^4
+(a+c)^4+(a−c)^4+(b+d)^4+(b−d)^4
+(a+d)^4+(a−d)^4+(b+c)^4+(b−c)^4
と近くはなったが,まだ隔たりがある.
===================================
(x^2+y^2+z^2+w^2)
=(x−y)^2+(z−w)^2+2(xy)+2(zw)
=(x−y)^2+(z−w)^2+(x+y)^2+(z+w)^2−(x^2+y^2+z^2+w^2)
3(x^2+y^2+z^2+w^2)
=(x−y)^2+(z−w)^2+(x+y)^2+(z+w)^2−(x^2+y^2+z^2+w^2)
+(x−z)^2+(y−w)^2+(x+z)^2+(y+w)^2−(x^2+y^2+z^2+w^2)
+(x−w)^2+(y−z)^2+(x+w)^2+(y+z)^2−(x^2+y^2+z^2+w^2)
6(x^2+y^2+z^2+w^2)
=(x−y)^2+(z−w)^2+(x+y)^2+(z+w)^2
+(x−z)^2+(y−w)^2+(x+z)^2+(y+w)^2
+(x−w)^2+(y−z)^2+(x+w)^2+(y+z)^2
似たような形にはなった.
===================================