■多元数(その82)

[5]x=x0+x1i+x2j+x3k,y=y0+y1i+y2j+y3k

  xy=(x0y0−x1y1−x2y2−x3y3)

    +(x0y1+x1y0+x2y3−x3y2)i

    +(x0y2−x1y3+x2y0+x3y1)j

    +(x0y3+x1y2−x2y1+x3y0)k

  xy=[ x0,−x1,−x2,−x3][y0]

     [ x1, x0,−x3, x2][y1]

     [ x2, x3, x0,−x1][y2]

     [ x3,−x2, x1, x0][y3]

[6]x=x0+x1i+x2j+x3k

  x^2=x0^2−x1^2−x2^2−x3^2+2x0(x1i+x2j+x3k)

  x0=0のとき,x^2=−x1^2−x2^2−x3^2

[7]x=x0+x1i+x2j+x3kの極形式

  x=rexp(μθ)=r{cosθ+μsinθ}

について,

  r=|x|=(x0^2+x1^2+x2^2+x3^2)^1/2

  θ=arctan((x1^2+x2^2+x3^2)^1/2/x0)

  μ=(x1i+x2j+x3k)/(x1^2+x2^2+x3^2)^1/2

===================================