■多元数(その11)
非可換な四元数と非可換・非結合的な八元数の数体系が存在することを述べた.
ハミルトンは非可換な四元数を発見したが,これは数の可換性を否定したことから,平行線の公理を否定したロバチェフスキーの非ユークリッド幾何学の発見と並び称される.
その後,グレーブスやケイリーによって八元数も見出されたが,
(a1^2+a2^2+・・・+an^2)(b1^2+b2^2+・・・+bn^2)=(c1^2+c2^2+・・・+cn^2)
の恒等式はn=1,2,4,8に対してだけ満たされるという驚くべき結果が19世紀末,フルヴィッツにより証明されている(1898年).
[参]森田克貞「四元数・八元数とディラック理論」日本評論社
===================================
【1】三元数は存在しないことの証明(1)
(a1^2+a2^2+a3^2)(b1^2+b2^2+b3^2)=c1^2+c2^2+c3^2
において,偶数の2乗は4nの形であり,奇数の2乗は
(2k+1)^2=4k(k+1)+1=8n+1
の形であるから,3つの2乗和はそれがすべて奇数であれば,4n+1か8n+3のいずれかの形をとる.
したがって,8n+7という形の奇数は決して3つの2乗和にかけない.すなわち,3元数に対する平方和問題は破綻している.
===================================
【2】三元数は存在しないことの証明(2)
三元数を
(x,y,z)=x+yi+zj
で表す.
x=(x,0,0),i=(0,1,0),j=(0,0,1)
i^2=−1=(−1,0,0),j^2=−1=(−1,0,0)
ここで,
ij=x+yi+zj
とかけたと仮定する.この式に左からiをかければ
zx−y+(x+yz)i+(z^2+1)j=0
が得られるが,zは実数であるので不可能.
===================================