■n=□+□+□+□(その25)

自然数nを4個の平方和で表す方法について考える。

 4=(±1)^2+(±1)^2+(±1)^2+(±1)^2   16通り

 4=(±2)^2+0^2+0^2+0^2            +8通り

のように,4個の平方数による分割

  n=x1^2+x2^2+x3^2+x4^2

の解の個数をR(n)で表せば,1829年,ヤコビは

  R(n)= 8Σ(2d+1)   n=1(mod 2)

  R(n)=24Σ(2d+1)   n=0(mod 2)

   Σは(2d+1)|nをわたる

を示しました.

すなわち、

nが奇数のときはnの正の奇約数の和の8倍

nが偶数のときはnの正の奇約数の和の24倍

 この出発点となった考え方は,

  {Σq^(n^2)}^4=ΣR(n)q^n

   =1+8nq^n/(1-q^n)

の2つの表現のq^nの係数を比較することであって,Σq^(n^2)はテータ関数です.R(n)を求めるのにヤコビはテータ関数を用いたのですが,それ以来,モジュラー形式などの解析的理論が数論へ応用されるようになり,ヤコビは2,4,6,8個の平方の和に分解する仕方の数,エルミートは3,5個の平方の和に分解する仕方の数を得ています.

===================================