■(1+1/n)^nの極限(その28)
有理数は有限連分数,無理数で代数的数の場合は無限循環連分数,超越数は無限非循環連分数になります.たとえば,超越数eの連分数展開は,
e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,・・・]
と書け,数字の出方が自然数順になっていることがわかります.
e=[2;1,2,1,1,4,1,1,6,1,・・・,1,2n,1,・・・] (オイラーの公式)
すなわち,2次の無理数のように規則的になっているわけですが,eのように超幾何関数の特殊値は3次の無理数よりも,2次の無理数に近いということなのでしょうか?
===================================
【1】ランベルトの公式
e=[2;1,2,1,1,4,1,1,6,1,・・・,1,2n,1,・・・] (オイラーの公式)
に対して,ランベルトの公式とは
{exp(2/m)+1}/{exp(2/m)−1}
=[m,3m,・・・,(2n+1)m,・・・]
とくに,m=2とおけば
(e+1)/(e−1)=[2,6,・・・,2(2n+1),・・・]
なお,
2/(√e−1)=[1,6,・・・,2(2n+1),・・・]
なども知られている.
===================================