■ほとんどフェルマーの定理(その20)
(γ-α)ω^n・(11296-136ω^-1)+(α-β)ω^-n・(11296-136ω)
=(11296)・{(ω^-1+1)ω^n-(ω+1)ω^-n}-136{(ω^-1+1)ω^(n-1)-(ω+1)ω^(-n+1)}
=(11296)・{(ω^n-ω^-n)+(ω^(n-1)-ω^(-n+1))}-136{(ω^(n-1)-ω^(-n+1)+(ω^(n-2)-ω^(-n+2))}
g1=ω-ω^-1=δ
g2=ω^2-ω^-2
gn=ω^n-ω^-nが求められれば良いのであるが・・・
ω+ω^-1=83
(γ-α)ω^n・(11296-136ω^-1)+(α-β)ω^-n・(11296-136ω)
=(11296)・{(ω^-1+1)ω^n-(ω+1)ω^-n}-136{(ω^-1+1)ω^(n-1)-(ω+1)ω^(-n+1)}
=(11296)・{(ω^n-ω^-n)+(ω^(n-1)-ω^(-n+1))}-136{(ω^(n-1)-ω^(-n+1)+(ω^(n-2)-ω^(-n+2))}
=(11296)・{gn+gn-1}-136{gn-1+gn-2}
===================================
g(-1)+g(-2)=-δ{84}
g0+g(-1)=-δ
g1+g0=δ
g2+g1=δ{84}
g3+g2=δ{6971}
g4+g3=δ{578509}
g5+g4=δ{48009276}
g6+g5=δ{3984191399}
g7+g6=δ{330639876841}→この数列は83h(n-1)-h(n-2)になっている→x^2-83x+1=0に戻ってしまった
(ω^n-ω^-n)+(ω^(n-1)-ω^(-n+1))=(ω+ω^-1){(ω^(n-1)-ω^-n+1)+(ω^(n-2)-ω^(-n+2))-{(ω^n-2-ω^-n+2)+(ω^(n-3)-ω^(-n+3))}
={(ω^(n)-ω^-n+2)+(ω^(n-1)-ω^(-n+3))+{(ω^(n-2)-ω^-n)+(ω^(n-3)-ω^(-n+1))-{(ω^n-2-ω^-n+2)+(ω^(n-3)-ω^(-n+3))}
={(ω^(n)+(ω^(n-1)+{-ω^-n)-ω^(-n+1))}
ここで一般項(ω^n−ω^-n)/(ω−ω^-1)=(ω^n−ω^-n)/δに戻したら堂々巡りになってしまうので、このままにするしかない。
===================================
an=-{(β-γ)(-1)^n・(-43)+(γ-α)ω^n・(11296-136ω^-1)+(α-β)ω^-n・(11296-136ω)}/(α-β)(β-γ)(γ-α)
=-{δ(-1)^n・(-43)+(11296)・{gn+gn-1}-136{gn-1+gn-2}}/(-85δ)
={δ(-1)^n・(-43)+(11296)・{gn+gn-1}-136{gn-1+gn-2}}/(85δ)
a0={-43-(11296)+136・84}/85=1
a1={+43+(11296)+136}/85=135
a2={-43+(11296)・84-136・1}/85=11161
a3={+43+(11296)・6971-136・84}/85=926271
a4={-43+(11296)・578509-136・6971}/85=76869289
a5={+43+(11296)・48009276-136・578509}/85=6379224759
===================================
a=-43,b=11296,c=136
h-1=-1,h0=1,h2=83h1-h0,h3=83h2-h1,・・・
an={(-1)^n・(a)+(b)・{hn}-(c)・{hn-1}}/(85)
===================================