■ユークリッド・マリン数列(その19)
ある定数P=1.306・・・(ミルズ定数)が存在して,素数だけしか与えない素数生成式
pn=[P^(3^n)]
が知られている.
===================================
1947年,ミルズはある定数Aが存在し,すべてのnに対して素数だけしか与えない公式
pn=[A^3^n]
を示した.
1.306377883863<A<1.306377883869
p1=2,p2=11,p3=1361,p4=2521008887
一方,n<p≦2nの間には常に1個の素数があるという1845年のベルトラン仮説を1850年,チェビシェフが証明した.今回のコラムではこれを使って,
[2^b],[2^2^b],[2^2^2^b],・・・
がすべて素数となる定数b〜1.25が存在するという証明を紹介したい.
===================================
【1】証明
p1=2とし,pnを2^Pn-1より大きい最も小さい素数する.このとき,ベルトラン仮説より
2^Pn-1<pn≦2^Pn-1+1
である.
b=loglog・・・(pn)=log^n(pn)
とすればよい.n→∞のとき,b→1.2516475977905・・・であって,
p1=2,p2=5,p3=37,p4=2^37+9
===================================