■(1+1/n)^nの極限(その19)

 解析学大要では、問題

  ∫(-1,1) 1/Sqrt((1-2sx+s^2)(1-2tx +t^2) dx

のまえに、Rodriguesの公式の説明があり、直交性のことに言及している。

 しかし、級数展開の話は出てこないし、無限級数の項別積分の可否や、複素平面での積分の話題は、第三章以降のトピックスとなる。

 従って、多くの学生は、

  1/sqrt((a-x)(b-x))

の形で積分を行い、満足してしまうだろう。

 計算結果に疑問を持った学生が、先生に質問すれば、問題の背景や、級数展開して、ルジャンドルの多項式の直交性を使うことを教えてくれるだろう。

 これは、出題した著者の勇み足というよりは、将来の勉強に向けた橋渡しの問題という事になる。

 なお、級数展開をする時点では、いったん|t|,|s|<1という課程をしなければならないが、問題の積分は、(一応、実数でああるが)制限はない。しかし、いったん積分結果を得てしまえば、t,sの値の制限は、取り去ってよいことになろう。

 実に、意味深長な問題といえる。

===================================