■3角数であり平方数であるものは無限に存在する(その2)

(証明)1/2y(y+1)=x^2,すなわち,

  (2y+1)^2−2(2x)^2=1

をみたす自然数の組(x,y)が無限にあることいえばよい.

 

 自然数an,bnを(1+√2)^n=an+bn√2によって定義すると,

  an^2−2bn^2=(an+bn√2)(an−bn√2)

         =(1+√2)^n(1+√2)^n=(−1)^n

また,(1+√2)^nの展開を考えると,

  an=1+(偶数),bn=n+(偶数)

よって,nを偶数にとるとan^2−2bn^2=1,anは奇数,bnは偶数.

そこで,y=(an−1)/2,x=bn/2とおくと,

  (2y+1)^2−2(2x)^2=1

====================================

(Q2)△=□,すなわち,三角数n(n+1)/2が完全平方数m^2となるnの値を求めよ.

(A2)n^2+n=2m^2

  4n^2+4n+1=8m^2+1

  (2n+1)^2=2(2m)^2+1

ここで,2n+1=p,2m=qとおくと

  p^2−2q^2=1  (ペル方程式)

に帰着されます.

  (p,q)=(3,2),(17,12),(99,70),(577,408),(3363,2378),・・・

 →(n,m)=(1,1),(8,6),(49,35),(288,204),(1681,1189),・・・nは完全平方と完全平方の2倍を交互に繰り返します.

====================================