■黄金比の仲間達(その12)

[Q]大長方形から正方形をa個切り取った後に残る中長方形から,正方形をb個切り取った後に残る小長方形が中長方形と相似になるのは?

[A]単純循環連分数

  L=[a:b,b,b,b,・・・]

で表される数Lを求めてみることにしましょう.

  L−a=R=[0:b,b,b,b,・・・]=1/(b+R)

  R^2+bR−1=0 → R=(−b+(b^2+4)^(1/2))/2

  L=a+R=a−b/2+(b^2/4+1)^(1/2)

  a=1,b=1 → L=(1+√5)/2=[1;1,1,1,1,1,・・・]

  a=1,b=2 → L=√2=[1;2,2,2,2,2,・・・]

  a=2,b=4 → L=√5=[2;4,4,4,・・・]

[Q]大長方形から正方形をa個切り取った後に残る中長方形から,正方形をb個切り取り,さらに正方形をc個切り取った後に残る小長方形が中長方形と相似になるのは?

[A]同様に,2項が循環する連分数は

  L=[a:b,c,b,c,・・・]

  L−a=R=[0:b,c,b,c,・・・]=1/(b+1/(c+R))

  bR^2+bcR−c=0 → R=(−c+(c^2+4c/b)^(1/2))/2

  L=a−c/2+(c^2/4+c/b)^(1/2)

  a=1,b=1,c=2 → L=√3=[1;1,2,1,2,1,2,・・・]

  a=2,b=2,c=4 → L=√6=[2;2,4,2,4,2,・・・]

 実数xの整数部分,小数部分を

  x=[x]+{x}

で表します.同様に,連分数表示を整数部分と小数部分に分けます.

  [a:b,b,b,b,・・・]=a+[0:b,b,b,b,・・・]=a+<b,b,b,b,・・・>

  [a:b,c,b,c,・・・]=a+[0:b,c,b,c,・・・]=a+<b,c,b,c,・・・>

 たとえば,小数部分<b,b,b,・・・>となる数をxとおくと,

  x=1/(b+x) → x=(√(n^2+4)−n)/2

このように循環連分数は整数係数の2次方程式の解となります(ラグランジュの定理).

  (√5−1)/2=[0:1,1,1,,1,・・・]

  √2−1=[0:2,2,2,2,・・・]

  (√13−3)/2=[0:3,3,3,3,・・・]

 <1,1,1,・・・>=xはx=1/(1+x)の正の解(√5−1)/2に収束します.この近似分数は,フィボナッチ数列

  a0=0,a1=1,an+2=an+an+1

  1,2,3,5,8,13,・・・

の相隣る2項の比となります.

 また,<2,2,2,・・・>=xはx=1/(2+x)の正の解√2−1に収束します.この近似分数は,数列

  a0=1,a1=1,an+2=an+2an+1

  1,2,6,12,29,70,・・・

の相隣る2項の比となります.この数列は√2−1の最良近似数列です.

===================================