■周期3はカオスをもたらす(その9)
【3】シャルコフスキーの定理
リー・ヨークの定理(1975年)は,シャルコフスキーの定理(周期解共存定理,1964年)に含まれる.
『すべての自然数を
3>5>7>9>・・・(奇数の無限大)
>2・3>2・5>2・7>・・・(2×奇数の無限大)
>2^2・3>2^2・5>2^2・7>・・・(2^2×奇数の無限大)
>2^m・3>2^m・5>2^m・7>・・・(2^m×奇数の無限大)
>2^∞・3>2^∞・5>2^∞・7>・・・(2^∞×奇数の無限大)
>2^∞>・・・>2^m>・・・>2^3>2^2>2>1
の順序に並べる.周期長nをもてばnより右にあるすべての周期長kをもつ.』
シャルコフスキーの定理は,リー・ヨークの定理が発表された以後広く知られるようになったのであるが,確かに3より右に並んでいる数はすべての自然数を網羅しているから,周期3のサイクルをもてばすべての周期をもつことになる.この定理の証明は不動点定理の応用による.
===================================