¡ƒtƒBƒ{ƒiƒbƒ`”EƒŠƒ…ƒJ”‚Ì–â‘èi‚»‚Ì‚Qj

ƒtƒBƒ{ƒiƒbƒ`”—ñ

f(x)=(x)/(1-x-x^2)=(1/ã5)/(1-ƒ¿x)-(1/ã5)/(1-ƒÀx)

ƒ¿=(1+ã5)/2AƒÀ=(1-ã5)/2,ƒ¿ƒÀ=-1,ƒ¿^2+ƒÀ^2=3AƒÀ=-1/ƒ¿

an=1/ã5E{ƒ¿^n-ƒÀ^n}

F2n+1=Fn^2+Fn+1^2l

a2n+1=1/ã5E{ƒ¿^2n+1-ƒÀ^2n+1}

a2n-1=1/ã5E{ƒ¿^2n-1-ƒÀ^2n-1}

(a2n+1)^2=1/5E{ƒ¿^4n+2-2(ƒ¿ƒÀ)^2n+1+ƒÀ^4n+2}=1/5E{ƒ¿^4n+2+2+ƒÀ^4n+2}

(a2n-1)^2=1/5E{ƒ¿^4n-2-2(ƒ¿ƒÀ)^2n-1+ƒÀ^4n-2}=1/5E{ƒ¿^4n-2+2+ƒÀ^4n-2}

(‚^2+‚‚^2+‚Pj=1/5E{ƒ¿^4n+2+2+ƒÀ^4n+2+ƒ¿^4n-2+2+ƒÀ^4n-2+5}

(‚^2+‚‚^2+‚Pj=1/5E{ƒ¿^4n+2+ƒÀ^4n+2+ƒ¿^4n-2+ƒÀ^4n-2+9}

a2n+1Ea2n-1=1/5E{ƒ¿^2n+1-ƒÀ^2n+1}{ƒ¿^2n-1-ƒÀ^2n-1}

a2n+1Ea2n-1=1/5E{ƒ¿^4n+ƒÀ^4n-ƒ¿^2n+1ƒÀ^2n-1-ƒ¿^2n-1ƒÀ^2n+1}

a2n+1Ea2n-1=1/5E{ƒ¿^4n+ƒÀ^4n-ƒ¿^2(ƒ¿ƒÀ)^2n-1-(ƒ¿ƒÀ)^2n-1ƒÀ^2}

a2n+1Ea2n-1=1/5E{ƒ¿^4n+ƒÀ^4n+ƒ¿^2+ƒÀ^2}

a2n+1Ea2n-1=1/5E{ƒ¿^4n+ƒÀ^4n+3}

3a2n+1Ea2n-1=1/5E{3ƒ¿^4n+3ƒÀ^4n+9}

5(‚^2+‚‚^2+‚Pj-15‚‚‚

={ƒ¿^4n+2+ƒÀ^4n+2+ƒ¿^4n-2+ƒÀ^4n-2+9-3ƒ¿^4n-3ƒÀ^4n-9}

={ƒ¿^4n(ƒ¿^2+ƒ¿^-2)+ƒÀ^4n(ƒÀ^2+ƒÀ^-2)-3ƒ¿^4n-3ƒÀ^4n}

={ƒ¿^4n(ƒ¿^2+ƒ¿^-2-3)+ƒÀ^4n(ƒÀ^2+ƒÀ^-2-3)}

={ƒ¿^4n(ƒ¿^2+ƒÀ^2-3)+ƒÀ^4n(ƒ¿^2+ƒÀ^2-3)}

0

‚‚e2k-1C‚‚‚e2k+1‚Ì‚Æ‚«A

(‚^2+‚‚^2{‚Pj^‚‚‚3

‚ª¬‚è—§‚Â