■算術平均・幾何平均不等式(その7)

 部分商がaになる確率は

  log2(1+1/a)−log2(1+1/(a+1))

=log2((a+1)^2/((a+1)^2−1))

 商が1になる確率はlog2(4/3)=41.504%

 商が2になる確率はlog2(9/8)=16.993%

 商が3になる確率はlog2(16/15)=9.311%

 商が4になる確率はlog2(25/24)=5.889%

 商が1となる確率は41%で,これはベンフォードの法則,最大桁が1になる頻度log102=0.3010よりも高いことになる.

===================================