■算術平均・幾何平均不等式(その5)
【1】ヒンチンの定数
ヒンチンは,一般の連分数
[a0:a1,a2,a3,・・・,an,・・・]
の大多数についてあてはまる法則を発見しています.ヒンチンの定理とは,ほとんどすべての実数について,幾何平均(a1a2・・・an)^1/nの値がn→∞のとき,ある無限乗積から定まる定数
(a1a2・・・an)^1/n→Π(1+1/k(k+2))^logk/log2=2.685452001・・・
に収束するというものです.κ=2.68545・・・はヒンチンの定数として知られています.
また,近似分数の分母が
(Bn)^1/n→exp(π^2/12log2)=3.27582・・・
になることを示しました.
ただし,分母に明確なパターンのある代数的数やeをはじめとするいくつかの超越数は例外になります.
(eの場合,(a1a2・・・an)^1/n→0.6259・・・)
算術平均は発散するのに対し幾何平均は収束するというわけですが,ほとんどすべての連分数の場合,調和平均も収束し,その極限値は
n/(1/a1+1/a2+・・・+1/an)→1.74540568・・・
===================================
【2】レヴィの定数
実数xのn項までの連分数展開pn/qnとする.ほとんどすべての実数に対して,
(qn)^1/n→exp(π^2/12log2)=3,27582292・・
===================================