■ベキ和とオイラー・マクローリンの和公式(その5)
オイラー・マクローリンの和公式を
Σ1/k^2
について適用してみたい.
f(x)=1/x^2 f^(5)(x)=−6!/x^7
f’(x)=−2/x^3 f^(6)(x)=7!/x^8
f”(x)=6/x^4 f^(7)(x)=−8!/x^9
f^(3)(x)=−24/x^5 f^(8)(x)=9!/x^10
f^(4)(x)=120/x^6 f^(9)(x)=−10!/x^11
===================================
Σ(1,n)1/k^2〜∫(1,n)1/x^2dx+(f(n)+f(1))/2+ΣB2k/(2k)!(f^(2k-1)(n)-f^(2k-1)(1))+R
∫(1,n)1/x^2dx=[-1/x]=-1/n+1
(f(n)+f(1))/2=(1/n^2+1)/2
(f'(n)-f'(1))/12=(-2/n^3+2)/12
(f^(3)(n)-f^(3)(1))/720=(-24/n^5+24)/720
(f^(5)(n)-f^(5)(1))/30240=(-6!/n^7+6!)/30240
(f^(7)(n)-f^(7)(1))/1209600=(-8!/n^9+8!)/1209600
Σ1/k^2〜-1/n+1/2n^2-1/6n^3+1/30n^5-1/42n^7n+1/30n^9+1+1/2+1/6-1/30+1/42-1/30+R
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1+1/4 =1.25
1+1/4+1/9 =1.36111
1+1/4+1/9+1/25 =1.42361
1+1/4+1/9+1/25+1/36 =1.46361
1+1/4+1/9+1/25+1/36+1/49 =1.49139
1+1/4+1/9+1/25+1/36+1/49+1/64 =1.5118
1+1/4+1/9+1/25+1/36+1/49+1/64+1/81 =1.52742
1+1/4+1/9+1/25+1/36+1/49+1/64+1/81+1/100=1.53977
1+1/4+1/9+1/25+1/36+1/49+1/64+1/81+1/100=1.54977
π^2/6=1.64493
1+1/2+1/6-1/30+1/42-1/30=1.62381
===================================