■スターリングの公式と・・・(その7)

 ここでは,

  Σk^3logk

について考えてみる.定数Cは

  C=−ζ’(−3)

で与えられるだろうか?

===================================

  f(x)=x^3logx   f^(5)(x)=−6/x^2

  f’(x)=3x^2logx+x^2  f^(6)(x)=12/x^3

  f”(x)=6xlogx+5x f^(7)(x)=−36/x^4

  f^(3)(x)=6logx+11  f^(8)(x)=144/x^5

  f^(4)(x)=6/x     f^(9)(x)=−720/x^6

より,

  f^(k)(x)=(-1)^k6(k−4)!/x^k-3

  f^(2k-1)(x)=−6(2k−5)!/x^2k-4

===================================

  Σ(1,n)k^3logk〜∫(1,n)x^3logxdx+(f(n)+f(1))/2+ΣB2k/(2k)!(f^(2k-1)(n)-f^(2k-1)(1))+R

  ∫(1,n)x^3logxdx=[x^4/4・logx]-∫(1,n)x^3/4dx=n^4/4・logn-n^4/16+1/16

  (f(n)+f(1))/2=n^3logn/2

  (f'(n)-f'(1))/12=1/12・(3n^2logn+n^2-1)

  (f^(3)(n)-f^(3)(1))/720=(6logn-6)/720

  (f^(5)(n)-f^(5)(1))/30240=(-6/n^2+6)/30240

  (f^(7)(n)-f^(7)(1))/1209600=(-36/n^4+36)/1209600

  B2k/(2k)!(f^(2k-1)(n)-f^(2k-1)(1))=-6B2k/(2k)!(2k−5)!(1/x^2k-4−1)→-6B2k/(2k)(2k-1)(2k-2)(2k-3)(2k-4)

  Σk^3logk〜(n^4/4+n^3/2+n^2/4-1/120)・logn-n^4/16+n^2/12+C

  C=1/16-1/12+1/120-1/5040+1/33600-・・・

  Σk^3logk〜(n^4/4+n^3/2+n^2/4-1/120)・logn-n^4/16+n^2/12-6ΣB2k/(2k)(2k-1)(2k-2)(2k-3)(2k-4)

  K=3~

===================================