■√(1+2√(1+3√(1+4√(1+・・・))))は3である(その9)
√(1−√(1−1/2√(1−1/4√(1−1/8√1−・・・))))=1/2であるが,
[Q]√(1+√(1+1/2√(1+1/4√(1+1/8√1−・・・))))=?
を求めてみたい.
===================================
n→∞のとき
{1+1/2^n-1(√1+・・・)}^1/2=1+1/2^n
√1+・・・=33/32=1+1/2^5
√(1+1/8√1+・・・)=17/16=1+1/2^4
√(1+1/4√(1+1/8√1+・・・))=9/8=1+1/2^3
√(1+1/2√(1+1/4√(1+1/8√1+・・・)))=5/4=1+1/2^2
√(1+√(1+1/2√(1+1/4√(1+1/8√1−・・・))))=1+1/2=3/2
===================================
3√(a+3√(a+3√(a+3√(a+・・・))))=b
a+3√(a+3√(a+3√(a+・・・)))=b^3
3√(−a+3√(−a+3√(−a+・・・)))=b^3−a
b=b^3−a→a=b^3−bであればよいことになる.
b=1とおくとa=0であるから,b=2とおくと
3√(6+3√(6+3√(6+3√(6+・・・))))=2
b=3とおくと
3√(24+3√(24+3√(24+3√(24+・・・))))=3
===================================