■円定理のいろいろ(その11)
半径1の大円の中に半径が2/3の小円と半径が1/3の小円が内接している。
円列の中心はわかっているから、半径を求めると
1/3=2/10
(9/21)^2+(12/21)^2=(15/21)^2→2/7
1/5=2/10
(-1/3)^2+(4/5)^2=(13/15)→2/15
(-6/11)^2+(8/11)^2=(10/11)→1/11=2/22
(-21/31)^2+(20/31)^2=(29/31)^2→2/31
(-16/21)^2+(12/21)^2=(20/21)^2→2/42
===================================
計算の都合上一番大きい円の曲率を2として、デカルトの4接円定理
2(a^2+b^2+c^2+d^2)=(a+b+c+d)^2
を検してみたい。
2((-2)^2+3^2+6^2+7^2)=(-2+3+6+7)^2→OK
2((-2)^2+3^2+7^2+10^2)=(-2+3+7+10)^2→OK
2((-2)^2+3^2+10^2+15^2)=(-2+3+10+15)^2→OK
2((-2)^2+3^2+15^2+22^2)=(-2+3+15+22)^2→OK
2((-2)^2+3^2+22^2+31^2)=(-2+3+22+31)^2→OK
2((-1)^2+3^2+31^2+42^2)=(-2+3+31+42)^2→OK
===================================